Which term is redudent in the expression AB+A’C+BC?
Which term is redudent in the expression AB+A’C+BC? Correct Answer BC
The Correct Answer is BC
The simplification of the boolean expression:
AB+A’C+BC = = AB + A’C + BC*1 {as A*1 = A}
= AB + A’C + BC(A + A’) {as Complement law: A + A’ = 1}
= AB + A’C + ABC + A’BC {as Absorption law: A(B + C) = AB + BC & AB = BA}
= AB + ABC + A’C + A’CB {as Commutative Law: A + B = B + A & AB = BA}
= AB*1 + ABC + A’C*1 + A’CB {as A*1 = A}
= AB(1 + C) + A’C(1 + B) {as AB + BC = A(B + C)}
= AB*1 + A’C*1 {as 1 + A = 1}
= AB + A’C {as A*1 = A}
Hence the redundant term in the given expression is BC
Additional InformationWe can directly evaluate this using Consensus theorem, i.e.
AB + A'C + BC = AB +A'C
Important Points
|
Name |
AND Form |
OR Form |
|
Identity law |
1.A=A |
0+A=A |
|
Null Law |
0.A=0 |
1+A=1 |
|
Idempotent Law |
A.A=A |
A+A=A |
|
Inverse Law |
AA’=0 |
A+A’=1 |
|
Commutative Law |
AB=BA |
A+B=B+A |
|
Associative Law |
(AB)C |
(A+B)+C = A+(B+C) |
|
Distributive Law |
A+BC=(A+B)(A+C) |
A(B+C)=AB+AC |
|
Absorption Law |
A(A+B)=A |
A+AB=A |
|
De Morgan’s Law |
(AB)’=A’+B’ |
(A+B)’=A’B’ |