If cos 37˚ = a/b then what is the value of cosec37˚ - cos53˚ = ?

If cos 37˚ = a/b then what is the value of cosec37˚ - cos53˚ = ? Correct Answer a<sup>2</sup>/b√(b<sup>2</sup> - a<sup>2</sup>)

cos 37° = a/b

sin 37° = √(b2 - a2)/b        ----(i)

cosec37° - cos53° = 1/sin 37° - sin 37°

(1 - sin2 37˚)/ sin 37= a2/b√(b2 - a2) (from (i)

Related Questions

Find the ∫∫x3 y3 sin⁡(x)sin⁡(y) dxdy. ]) b) (-x3 Cos(x) – 3x2 Sin(x) – 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3]) c) (-x3 Cos(x) + 3x2 Sin(x) + 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3y2 Sin(y) + 6yCos(y) – 6Sin(y)) d) (–x3 Cos(x) + 6xCos(x) – 6Sin(x))(-y3 Cos(y))