What is the solution of the equation x log10(10/3) + log103 = log10(2 + 3x) + x?
What is the solution of the equation x log10(10/3) + log103 = log10(2 + 3x) + x? Correct Answer 0
x log10(10/3) + log103 = log10(2 + 3x) + x
⇒ x log1010 – x log103 + log103 = log10(2 + 3x) + x
⇒ x – x log103 + log103 = log10(2 + 3x) + x
⇒ log103-x + log103 = log10(2 + 3x)
⇒ log10(3-x) × 3 = log10(2 + 3x)
⇒ (3-x) × 3 = (2 + 3x)
⇒ 3/3x = (2 + 3x)
Suppose 3x = p;
⇒ 3/p = (2 + p)
⇒ p2 + 2p – 3 = 0
⇒ (p + 3) (p – 1) = 0
⇒ p = -3, 1
∴ 3x = 1
⇒ 3x = 30
∴ x = 0
মোঃ আরিফুল ইসলাম
Feb 20, 2025