If 16a4 + 36a2b2 + 81b4 = 91 and 4a2 + 9b2 – 6ab = 13, then what is the value of 3ab?

If 16a4 + 36a2b2 + 81b4 = 91 and 4a2 + 9b2 – 6ab = 13, then what is the value of 3ab? Correct Answer –3/2

16a4 + 36a2b2 + 81b4 = 91

⇒ (4a2)2 + 4a2 × 9b2 + (9b2)2 = 91

⇒ Adding 4a2 × 9b2 to make (a + b)2

⇒ (4a2)2 + 2(4a2 × 9b2) + (9b2)2 = 91 + 4a2 × 9b2

⇒ (4a2 + 9b2)2 = 91 + 36a2b2      ----(1)

Now, 4a2 + 9b2 – 6ab = 13

⇒ 4a2 + 9b2 = 13 + 6ab      ----(2)

Putting equation 2 in equation 1

⇒ (13 + 6ab)2 = 91 + 36a2b2

⇒ 169 + 36 a2b2 + 156ab = 91 + 36 a2b2

⇒ 156ab = - 78

⇒ ab = - ½

⇒ 3ab = - 3/2

Related Questions

Identify the like terms: 3ab – 4b2 – 6ab.
Find the square root of 4a2 + 9b2 + c2 + 12ab – 6bc – 4ac.