The circle `x^2+y^2=5` meets the parabola `y^2=4x` at `P` and `Q` . Then the length `P Q` is equal to 2 (b) `2sqrt(2)` (c) 4 (d) none of these
The circle `x^2+y^2=5`
meets the parabola `y^2=4x`
at `P`
and `Q`
. Then the length `P Q`
is equal to
2 (b) `2sqrt(2)`
(c) 4
(d) none of these
A. 2
B. `2sqrt(2)`
C. 4
D. none of these
6 views
1 Answers
Correct Answer - C
(3) Solving the circle `x^(2)+y^(2)=5` and the parabola `y^(2)=4x`, we have
`x^(2)+4x-5=0`
i.e., x=1 or x=-5 (not possible)
`:." "y^(2)=4ory=pm2`
Therefore, the points of intersection are P(1,2) and Q(1,-2).
Hence, PQ=4.
6 views
Answered