Let `f(x) = (x^2-9x+20)/(x-[x])` where `[x]` denotes greatest integer less than or equal to `x`), then
A. -1
B. `1//2`
C. 1
D. `3//2`

5 views

1 Answers

Correct Answer - A::B::C
`underset(xto5^(-))lim(x^(2)-9x+20)/(x-[x])=underset(xto5^(-))lim((x-5)(x-4))/(x-4)=underset(xto5^(-))lim(x-5)=0`
`underset(xto5^(+))lim(x^(2)-9x+20)/(x-[x])=underset(xto5^(+))lim((x-5)(x-4))/(x-5)=underset(xto5^(+))lim(x-4)=1`
Hence , limit does not exist.

5 views