If `f(x)=|x-1|-[x]`, where `[x]` is the greatest integer less than or equal to x, then
If `f(x)=|x-1|-[x]`, where `[x]` is the greatest integer less than or equal to x, then
A. `underset(xto0)lim[f(x)]=0`
B. `underset(xto0)lim[f(x)]=1`
C. `underset(xto0)lim[(f(x))/(x)]` does not exist
D. `underset(xto0)lim[(f(x))/(x)]` exists
5 views
1 Answers
Correct Answer - A::D
`f(1+0)=underset(hto0)lim(|1+h-1|-[1+h])=underset(hto0)lim(h-1)=-1`
`f(1-0)=underset(hto0)lim(|1-h-1|-[1-h])=underset(hto0)lim(h-0)=0`
5 views
Answered