If the sum of the three numbers in a G.P is 26 and the sum of products taken two at a time is 156, then the numbers are
If the sum of the three numbers in a G.P is 26 and the sum of products taken two at a time is 156, then the numbers are
A) 1, 4, 16
B) 2, 6, 18
C) 1, 5, 25
D) 1, 8, 64
2 Answers
Correct option is (B) 2, 6, 18
Let required three numbers in G.P. are a, ar & \(ar^2.\)
\(\therefore\) Their sum \(=a+ar+ar^2\)
\(\therefore\) \(a+ar+ar^2=26\) (Given)
\(\Rightarrow a(1+r+r^2)=26\) ______________(1)
Also \(a.ar+ar.ar^2+a.ar^2=156\) (Given)
\(a^2r(1+r+r^2)=156\) ______________(2)
Divide equation (2) by (1), we get
\(\frac{a^2r(1+r+r^2)}{a(1+r+r^2)}=\frac{156}{26}\)
\(\Rightarrow ar=6\) ______________(3)
Then from (1), we have
\(a+ar+ar.r=26\)
\(\Rightarrow a+6+6r=26\) \((\because ar=6)\)
\(\Rightarrow a+6r=26-6=20\)
\(\Rightarrow ar+6r^2=20r\)
\(\Rightarrow6+6r^2=20r\) \((\because ar=6)\)
\(\Rightarrow6r^2-20r+6=0\)
\(\Rightarrow3r^2-10r+3=0\)
\(\Rightarrow3r^2-9r-r+3=0\)
\(\Rightarrow3r(r-3)-1(r-3)=0\)
\(\Rightarrow(r-3)(3r-1)=0\)
\(\Rightarrow r-3=0\;or\;3r-1=0\)
\(\Rightarrow r=3\;or\;r=\frac13\)
From (3), we have
\(a=\frac6r=\frac63=2\) or
\(a=\frac6r=\frac6{\frac13}=18\)
If r = 3 then a = 2
or if \(r=\frac13\) then a = 18
Case I :-
r = 3 & a = 2
\(\therefore ar=2\times3=6\)
\(ar^2=2\times9=18\)
Hence, required number are 2, 6 and 18.
Case II :-
If \(r=\frac13\) & a = 18
\(\therefore ar=\frac{18}3=6\)
& \(ar^2=\frac{18}9=2\)
Hence, required numbers in G.P. are 2, 6 & 18 or 18, 6, 2.
Alternate :-
Let \(a,ar,ar^2\) be required three numbers in G.P.
\(\therefore a+ar+ar^2=26\)
\(\Rightarrow a(1+r+r^2)=26\) _______________(1)
And \(a.ar+ar.ar^2+ar^2.a=156\)
\(\Rightarrow a^2r(1+r+r^2)=156\) _______________(2)
Divide equation (2) by (1), we get
\(\frac{a^2r(1+r+r^2)}{a(1+r+r^2)}=\frac{156}{26}=6\)
\(\Rightarrow ar=6\) _______________(3)
Put ar = 6 in equation (1), we get
\(a+6+6r=26\)
\(\Rightarrow a+6r=26-6=20\)
\(\Rightarrow ar+6r^2=20r\) (Multiply both sides by r)
\(\Rightarrow6+6r^2-20r=0\)
\(\Rightarrow3r^2-10r+3=0\)
\(\Rightarrow3r^2-9r-r+3=0\)
\(\Rightarrow3r(r-3)-1(r-3)=0\)
\(\Rightarrow(r-3)(3r-1)=0\)
\(\Rightarrow r-3=0\;or\;3r-1=0\)
\(\Rightarrow r=3\;or\;r=\frac13\)
Case I :-
r = 3 then \(a=\frac6r\)
\(=\frac63=2\)
\(\therefore ar=2\times3=6\)
\(ar^2=2\times9=18\)
Case II :-
\(r=\frac13\) then \(a=\frac6r=\frac6{\frac13}\)
\(=6\times3=18\)
\(\therefore ar=18\times\frac13=6\)
and \(ar^2=18\times\frac19=2\)
Hence, required numbers are 2, 6, 18.