A 10 litre box contains `O_3` and `O_2` at equilibrium at 2000 K. `K_p=4xx10^(14)` atm for `2O_3(g)hArr 3O_2(g)`
Assume that `P_(O_2)gtgtP_(O_3)` and if total pressure is 8 atm, then partial pressure of `O_3` will be :
A. `8xx10^(-6)`
B. `22.62xx10^(-7)`
C. `9.71xx10^(-6)`
D. `9.71xx10^(-2)`

7 views

1 Answers

Correct Answer - B
`DeltaG^@= -RT` In K=-2.3x2000x8.3 log K
`(534.32xx10^3)/(2.3xx8.3xx2000)=log K`
`K=10^14`
`2O_3(g)hArr 3O_2(g) " " K=10^14`
So `P_(O_3)ltltlt P_(O_2)`
So`P_(O_2)+P_(O_3)=8`
`P_(O_2)=8` atm
`K=10^14=((P_(O_2))^3)/((P_(O_3))^2)=(8)^3/P(O_3)`
`P_(O_3)=22.62xx10^(-7)` atm

7 views

Related Questions