A two-digit number is formed by either subtracting 17 from nine times the sum of the digits or by adding 21 to 13 times the difference of the digits. Find the number. 

A) 73 

B) 79 

C) 81 

D) 92

12 views

2 Answers

Correct option is (A) 73

Let two-digit number be ab where b is unit's digit and a is ten's digit.

\(\therefore\) ab = 10a + b       __________(1)

According to first condition

10a + b = 9 (a+b) - 17

\(\Rightarrow\) 10a - 9a + b - 9b = -17

\(\Rightarrow\) a - 8b = -17        __________(2)

According to second condition

10a + b = 13 (a - b) + 21

\(\Rightarrow\) 10a - 13a + b + 13b = 21

\(\Rightarrow\) -3a + 14b = 21  __________(3)

Multiply equation (2) by 3, we get

3a - 24b = -51       __________(4)

By adding equations (3) & (4), we get

14b - 24b = 21 - 51

\(\Rightarrow\) -10b = -30

\(\Rightarrow b=\frac{-30}{-10}=3\)

Then from (2), we obtain

a = 8b - 17 = 24 - 17 = 7

\(\therefore ab=10\times7+3=73\)

Hence, required number is 73.

12 views

Correct option is A) 73

12 views