The sum of the digits of a two digit number is 8. If the digits are reversed, the number is decreased by 54. Find the number. 

A) 62 

B) 80 

C) 71

D) 53

5 views

2 Answers

Correct option is (C) 71

Let the number be ab or (10a+b)

\(\therefore\) Sum of digits = a+b

Given that sum of digits of two-digit number is 8.

\(\therefore\) a+b = 8         __________(1)

Reversed number is ba or (10b+a)

Given that when digits are reversed, the number is decreased by 54.

i.e., (10a+b) - (10b+a) = 54

\(\Rightarrow\) 9a - 9b = 54

\(\Rightarrow\) a - b \(=\frac{54}9\) = 6   __________(2)

By adding equations (1) & (2), we obtain

2a = 8+6 = 14

\(\Rightarrow a=\frac{14}2=7\)

Then from (1), we obtain

b = 8 - a = 8 - 7 = 1

Hence, the number is ab = 71.

5 views

Correct option is C) 71

5 views