If Δ PQR∼ ΔXYZ, QR = 3 cm, YZ = 4 cm, ar ΔPQR= 54 cm^2, then ar ΔXYZ = ……….. (A) 13.5 cm^2
If Δ PQR∼ΔXYZ, QR = 3 cm, YZ = 4 cm, ar ΔPQR= 54 cm2, then ar ΔXYZ = ………..
(A) 13.5 cm2
(B) 46 cm2
(C) 96 cm2
(D) 12 cm2
2 Answers
Correct option is (C) 96 cm2
We have \(\triangle PQR\sim\triangle XYZ,\)
QR = 3 cm, YZ = 4 cm and \(ar(\triangle PQR)=54\,cm^2\)
We know that the area of two similar triangles are in the ratio of the squares of their corresponding sides.
\(\because\) \(\triangle XYZ\sim\triangle PQR\)
\(\therefore\) \(\frac{ar(\triangle XYZ)}{ar(\triangle PQR)}=(\frac{XY}{PQ})^2\)
\(=(\frac{YZ}{QR})^2=(\frac{XZ}{PR})^2\)
\(\Rightarrow\) \(\frac{ar(\triangle XYZ)}{ar(\triangle PQR)}=(\frac{YZ}{QR})^2=\frac{YZ^2}{QR^2}\)
\(=\frac{4^2}{3^2}=\frac{16}{9}\)
\(\Rightarrow\) \(ar(\triangle XYZ)=\frac{16}9\,ar(\triangle PQR)\)
\(=\frac{16}9\times54\) \((\because ar(\triangle PQR)=54\,cm^2)\)
\(=16\times6\) \(=96\,cm^2\)