Suppose a, b, c are real numbers, and each of the equations `x^(2)+2ax+b^(2)=0` and `x^(2)+2bx+c^(2)=0` has two distinct real roots. Then the equation
Suppose a, b, c are real numbers, and each of the equations `x^(2)+2ax+b^(2)=0` and `x^(2)+2bx+c^(2)=0` has two distinct real roots. Then the equation `x^(2)+2cx+a^(2)=0` has -
(A) Two distinct positive real roots (B) Two equal roots
(C) One positive and one negative root (D) No real roots
A. Two distinct positive real roots
B. Two equal roots
C. One positive and one negative root
D. No real roots
1 Answers
Correct Answer - D
`x^(2)+2ax+b^(2)=0" "x^(2)+2bx+c^(2)=0`
`D_(1)gt0" "D_(2)gt0`
`4a^(2)+b^(2)gt0" "4b^(2)-4c^(2)gt0`
`a^(2)gtb^(2)…..(1)" "b^(2)gtc^(2)…….(2)`
From (1) and (2)
`a^(2)gtb^(2)gtc^(2)rArra^(2)gtc^(2)rArrc^(2)-a^(2)lt0`
`x^(2)+2cx+a^(2)=0`
`D=4c^(2)-4a^(2)lt0" No real roots"`