Suppose, a, b, c are three distinct real numbers. Let P (x) =`((x-b)(x-c))/((a-b)(a-c))+((x-c)(x-a))/((b-c)(b-a))+((x-a)(x-b))/((c-a)(c-b))`. When sim
Suppose, a, b, c are three distinct real numbers. Let P (x) =`((x-b)(x-c))/((a-b)(a-c))+((x-c)(x-a))/((b-c)(b-a))+((x-a)(x-b))/((c-a)(c-b))`.
When simplified, P (x) becomes
A. 1
B. x
C. `(x^(2)+(a+b+c)(ab+bc+ca))/((a-b)(b-c)(c-a))`
D. 0
5 views
1 Answers
Correct Answer - A
`P(x)=((x-b)(x-c))/((a-b)(a-c))+((x-c)(x-a))/((b-c)(b-a))+((x-a)(x-b))/((c-a)(c-b))`
`"Let "P(a)=1+0+0=1`
`P(b) =0+1+0=1`
`P (c) =0+0+1=1`
`:. P(x)=1 " for all "x in R`.
5 views
Answered