Let `A` be an nth-order square matrix and `B` be its adjoint, then `|A B+K I_n|` is (where `K` is a scalar quantity) `(|A|+K)^(n-2)` b. `(|A|+)K^n` c.
Let `A`
be an nth-order square matrix and `B`
be its adjoint, then `|A B+K I_n|`
is (where `K`
is a scalar quantity)
`(|A|+K)^(n-2)`
b. `(|A|+)K^n`
c. `(|A|+K)^(n-1)`
d. none of these
A. `(abs(A) +k)^(n-2) `
B. `(abs(A) +k)^(n)`
C. `(abs(A) +k)^(n-1)`
D. `(abs(A) +k)^(n+1)`
4 views
1 Answers
Correct Answer - B
` because ` B = adj A
`rArr AB = A("ajd " A) = abs(A) I_(n)`
`therefore AB + KI_(n )= abs(A) I_(n) + kI_(n) = (abs(A) + k ) I_(n)`
`rArr abs( AB + KI_(n ))= abs((abs(A) + k))I_(n) = (abs(A) + k )^(n)`
4 views
Answered