[\( \left.\tan 4 x=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan 4 x}\right] \)
Prove that:
[\( \left.\tan 4 x=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan 4 x}\right] \)
4 views
2 Answers
tan 4x = tan(2 x 2x) = \(\frac{2tan2x}{1 - tan^22x}\)
= \(\cfrac{2(\frac{2tanx}{1-tan^2x})}{1-(\frac{2tanx}{1-tan^2x})^2}\) = \(\cfrac{\frac{4tanx}{1-tan^22x}}{\frac{(1-tan^2x)^2-4tan^2x}{(1-tan^2x)^2}}\)
\(=\frac{4tanx(1-tan^2x)}{1+tan^4x-2tan^2x-4tan^2x}\)
\(=\frac{4tanx(1-tan^2x)}{1-6tan^2x + tan^4x}\)
Hence Proved
4 views
Answered