4. \( \quad \begin{aligned}f(x)\} &=\frac{x^{2}-4}{x-2} \quad x \neq 2 \\ &=2 \quad x=2 \end{aligned} \) Then \( f(x) \) is/ has A) Continuous at \( x=2 \) B) Removable discontinuity at \( x=2 \) C) Jump discontinuity at \( x=2 \) D) Infinite discontinuity at \( x=2 \) E) missing point discontinuity at \( x=2 \)

4 views

1 Answers

f(x) = \(\begin{cases} \frac{x^2-4}{x-2}, & \quad x\neq2\\ 2, & \quad x = 2 \end{cases}\) 

\(\lim\limits_{x\to2}f(x)=\lim\limits_{x\to2}\frac{x^2-4}{x-2}\)

\(=\lim\limits_{x\to2}\frac{(x-2)(x+2)}{x-2}\) 

\(=\lim\limits_{x+2}\,x+2\)

= 2 + 2 = 4

But f(2) = 2

Therefore \(\lim\limits_{x\to 2}f(x)\neq f(2)\) 

Thus, f(x) has a removable discontinuity.

We have to change the value of function at x = 2 which is 4.

4 views

Related Questions