The sum of the digits of a two digit number is 15. The number obtained by interchanging the digits exceeds the given number by 9. The number is 

(a) 96 (b) 69 (c) 87 (d) 78

5 views

1 Answers

(a) 96

Let the tens and the units digits of the required number be x and y, respectively. 

Required number = (10x + y) 

According to the question, we have: 

x + y = 15 ……..(i) 

Number obtained on reversing its digits = (10y + x) 

∴ (10y + x) = (10x + y) + 9 

⇒ 10y + x – 10x – y = 9 

⇒ 9y – 9x = 9 

⇒ y – x = 1 …….(ii) 

On adding (i) and (ii), we get: 

2y = 16 

⇒ y = 8 

On substituting y = 8 in (i), we get: 

x + 8 = 15 

⇒ x = (15 – 8) = 7 

Number = (10x + y) = 10 × 7 + 8 = 70 + 8 = 78 

Hence, the required number is 78.

5 views

Related Questions