A number consisting of two digits is seven times the sum of its digits. When 27 is subtracted from the number, the digits are reversed. Find the number.

5 views

2 Answers

Let the tens and the units digits of the required number be x and y, respectively. 

Required number = (10x + y) 

10x + y = 7(x + y) 

10x + 7y = 7x + 7y or 3x – 6y = 0 ……….(i) 

Number obtained on reversing its digits = (10y + x) 

(10x + y) - 27 = (10y + x) 

⇒10x – x + y – 10y = 27 

⇒9x – 9y = 27 

⇒9(x – y) = 27 

⇒x – y = 3 ……..(ii) 

On multiplying (ii) by 6, we get: 

6x – 6y = 18 ………(iii) 

On subtracting (i) from (ii), we get: 

3x = 18 

⇒ x = 6 

On substituting x = 6 in (i) we get 

3 × 6 – 6y = 0 

⇒ 18 – 6y = 0 

⇒ 6y = 18 

⇒ y = 3 

Number = (10x + y) = 10 × 6 + 3 = 60 + 3 = 63 

Hence, the required number is 63.

5 views

Let unit’s digit = y

and the ten’s digit = x

So, the original number = 10x + y

The sum of the number = 10x + y

The sum of the digit = x + y

According to the question,

10x + y = 7(x + y)

⇒ 10x + y = 7x + 7y

⇒ 10x + y – 7x – 7y = 0

⇒ 3x – 6y = 0

⇒ x – 2y = 0

⇒ x = 2y …(i)

The reverse number = x + 10y

and 10x + y – 27 = x + 10y

⇒ 10x + y – 27 = x + 10y

⇒ 10x – x + y – 10y = 27

⇒ 9x – 9y = 27

⇒ x – y = 3 …(ii)

On substituting the value of x = 2y in Eq. (ii), we get

x – y = 3

⇒ 2y – y = 3

⇒ y = 3

On putting the value of y = 3 in Eq. (i), we get

x = 2(3) = 6

So, the Original number = 10x + y

= 10×6 + 3

= 60 + 3

= 63

Hence, the two digit number is 63.

5 views

Related Questions