Find the coordinates of a point equidistant from the four points O (0, 0, 0), A (l, 0, 0), B (0, m, 0) and C (0, 0, n).

4 views

1 Answers

Let P (x, y, z) be the required point. Then OP = PA = PB = PC.

Now OP = PA ⇒OP2 = PA2 ⇒ x2 + y2 + z2 = (x – l)2 + (y – 0)2 + (z – 0)2 ⇒ x = i/2

Similarly, OP = PB ⇒ y =m/2 and OP = PC ⇒ z = n/2

Hence, the coordinate of the required point are (l/2,m/2,n/2)

4 views