The coefficient of the middle term in the binomial expansion in powers of x of (1 + αx)4 and of (1 – αx)6 is the same if α equals

(a) –3/10

(b) 10/3

(c) –5/3 

(d) 3/5.

4 views

2 Answers

(a) : Coefficient of middle term in (1 + αx)4 = coefficient of middle term in (1 – αx)6
Therefore, 4C2α2 = 6C3(– α)3
=> α = - 3/10

4 views

Answer : (a) - \(\frac{3}{10}\)

The Middle term in the expansion of (1 + αx)4 is the \((\frac{4}{2} +1)\)th term, i.e., 3rd term.

∴ t3 = t 2 + 1 = 4C2 (αx)2

The Middle term in the expansion of (1 – αx)6 is the \((\frac{6}{2} +1)\)th term, i.e., 4th term. 

∴ T4 = T3 + 1 = 6C3 (– 1)3 (αx)3

∴ Coefficient of t 3 = Coefficient of T4

4C2 α2 = 6C3 (-1)3 α3

⇒ \(\frac{4\times 3}{2} \alpha^2 = (-1) \times \frac{6\times 5\times 4}{3\times 2} \alpha^3\)

⇒ 6α2 = -20α3

⇒ α = - \(\frac{6}{20}\)  

= - \(\frac{3}{10}\) 

4 views