4 views

1 Answers

Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. It is named after Étienne Bézout.

In some elementary texts, Bézout's theorem refers only to the case of two variables, and asserts that, if two plane algebraic curves of degrees d 1 {\displaystyle d_{1}} and d 2 {\displaystyle d_{2}} have no component in common, they have d 1 d 2 {\displaystyle d_{1}d_{2}} intersection points, counted with their multiplicity, and including points at infinity and points with complex coordinates.

In its modern formulation, the theorem states that, if N is the number of common points over an algebraically closed field of n projective hypersurfaces defined by homogeneous polynomials in n + 1 indeterminates, then N is either infinite, or equals the product of the degrees of the polynomials. Moreover, the finite case occurs almost always.

In the case of two variables and in the case of affine hypersurfaces, if multiplicities and points at infinity are not counted, this theorem provides only an upper bound of the number of points, which is almost always reached. This bound is often referred to as the Bézout bound.

4 views

Related Questions