1 Answers
Evolutionary invasion analysis, also known as adaptive dynamics, is a set of mathematical modeling techniques that use differential equations to study the long-term evolution of traits in asexually reproducing populations. It rests on the following four assumptions about mutation and natural selection in the population under study:
Evolutionary invasion analysis makes it possible to identify conditions on model parameters for which the mutant population dies out, replaces the resident population, and/or coexists with the resident population. Long-term coexistence is known as evolutionary branching. When branching occurs, the mutant establishes itself as a second resident in the environment.
Central to evolutionary invasion analysis is the mutant's invasion fitness. This is a mathematical expression for the mutant's long-term exponential growth rate when it is introduced into the resident population in small numbers. If the invasion fitness is positive, the mutant population can grow in the environment set by the resident organism. If the invasion fitness is negative, the mutant population swiftly goes extinct.