1 Answers

Option 1 : 1 only

Concept:

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Calculation:

Let, us suppose the universal set U = A ∪ B.

Statement 1:

⇒ (A ∩ B) ∪ (A ∩ B̅) ∪ (A̅ ∩ B) = {A ∪ (A ∩ B̅)} ∩ {B ∪ (A ∩ B̅)} ∪ (A̅ ∩ B)

⇒ (A ∩ B) ∪ (A ∩ B̅) ∪ (A̅ ∩ B) = {(A ∪ A) ∩ (A ∪ B̅)} ∩ {(A ∪ B) ∩ (B ∪ B̅)} ∪ (A̅ ∩ B)

⇒ (A ∩ B) ∪ (A ∩ B̅) ∪ (A̅ ∩ B) = {A ∩ U} ∩ {U ∩ U} ∪ (A̅ ∩ B)

⇒ (A ∩ B) ∪ (A ∩ B̅) ∪ (A̅ ∩ B) = A ∪ (A̅ ∩ B) = (A ∪ A̅) ∩ (A ∪ B) = A ∪ B

Hence statement 1 is Correct.

Statement 2:

⇒ (A ∪ (A̅ ∩ B̅)) = (A ∪ A̅) ∩ (A ∪ B̅)

⇒ (A ∪ (A̅ ∩ B̅)) = U ∩ (B ∩ A̅) = A̅ ∩ B

Hence, statement 2 is wrong.
4 views

Related Questions