1 Answers
Option 1 : 1 only
Concept:
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
Calculation:
Let, us suppose the universal set U = A ∪ B.
Statement 1:
⇒ (A ∩ B) ∪ (A ∩ B̅) ∪ (A̅ ∩ B) = {A ∪ (A ∩ B̅)} ∩ {B ∪ (A ∩ B̅)} ∪ (A̅ ∩ B)
⇒ (A ∩ B) ∪ (A ∩ B̅) ∪ (A̅ ∩ B) = {(A ∪ A) ∩ (A ∪ B̅)} ∩ {(A ∪ B) ∩ (B ∪ B̅)} ∪ (A̅ ∩ B)
⇒ (A ∩ B) ∪ (A ∩ B̅) ∪ (A̅ ∩ B) = {A ∩ U} ∩ {U ∩ U} ∪ (A̅ ∩ B)
⇒ (A ∩ B) ∪ (A ∩ B̅) ∪ (A̅ ∩ B) = A ∪ (A̅ ∩ B) = (A ∪ A̅) ∩ (A ∪ B) = A ∪ B
Hence statement 1 is Correct.
Statement 2:
⇒ (A ∪ (A̅ ∩ B̅)) = (A ∪ A̅) ∩ (A ∪ B̅)
⇒ (A ∪ (A̅ ∩ B̅)) = U ∩ (B ∩ A̅) = A̅ ∩ B
Hence, statement 2 is wrong.
4 views
Answered