1 Answers
Option 1 : Quantity I > Quantity II
Given:
Radius of circle = 56 cm
Ratio of length and breadth of rectangle = 7 ∶ 22
Condition: The area of the circle is equal to the area of the rectangle
Concept:
Area of circle = πr2
Area of rectangle = length × breadth
Perimeter of rectangle = 2 × (length × breadth)
Calculation:
Area of circle = πr2
⇒ (22/7) × 56 × 56 (∵ π = 22/7)
⇒ 22 × 8 × 56
⇒ 176 × 56
⇒ 9856 cm2
Now,
Let the length and breadth of the rectangle be 7x and 22x respectively.
Area of rectangle = length × breadth
⇒ 7x × 22x
⇒ 154x2
Now,
According to given Condition
⇒ 9856 = 154x2
⇒ x2 = 9856/154
⇒ x2 = 64
⇒ x = 8
Now,
Perimeter of rectangle = 2 × (l + b)
⇒ 2 × (7x + 22x)
⇒ 2 × (7 × 8 + 22 × 8) (∵ x= 8)
⇒ 2 × (56 + 176)
⇒ 2 × 232
⇒ 464 cm
∴ The Perimeter of rectangle will be 464 cm
Quantity II:
Given:
Area of circle = 154 cm2
Radius of cylinder = (1/7) of radius of circle
Height of cylinder = twice the radius of circle
Concept:
Area of circle = πr2
Volume of cylinder = πr2h
Calculation:
Area of circle = πr2
⇒ (22/7) × r2 = 154 (∵ π = 22/7)
⇒ r2 = 7 × 7
⇒ r2 = 49
⇒ r = 7 cm
Now,
Radius of cylinder = (1/7) × 7 (∵ radius of circle = 7 cm)
⇒ 1 cm
Height of cylinder = 2 × 7 (∵ radius of circle = 7 cm)
⇒ 14 cm
Now,
Volume of cylinder = πr2h
⇒ (22/7) × 1 × 1 × 14 (∵ radius of cylinder = 1 cm, height of cylinder = 14 cm)
⇒ 22 × 1 × 1 × 2
⇒ 44 cm3
∴ The Volume of cylinder is 44 cm3
Comparison of both the result:
∴ Quantity I > Quantity II