For what value of x, y and z matrices A and B are equal \(A = \begin{bmatrix} 2 & 0 & x+3 \\\ y-4 & 4 & 6 \end{bmatrix} ; \ \ B = \begin{bmatrix} 2 & 0 & 6 \\\ -2 & 4 & 2z \end{bmatrix}\)

For what value of x, y and z matrices A and B are equal \(A = \begin{bmatrix} 2 & 0 & x+3 \\\ y-4 & 4 & 6 \end{bmatrix} ; \ \ B = \begin{bmatrix} 2 & 0 & 6 \\\ -2 & 4 & 2z \end{bmatrix}\) Correct Answer x = 3, y = 2 and z = 3

Concept:

A and B are equal matrices, hence their corresponding elements are also equal.

Calculation:

x + 3 = 6

⇒ x = 3

y - 4 = - 2

⇒ y = 2

2z = 6

⇒ z = 3

∴ x = 3, y = 2 and z = 3

Related Questions

Consider the 5 × 5 matrix \[{\text{A}} = \left[ {\begin{array}{*{20}{c}} 1&2&3&4&5 \\ 5&1&2&3&4 \\ 4&5&1&2&3 \\ 3&4&5&1&2 \\ 2&3&4&5&1 \end{array}} \right