If 2cosx/(cosx – sinx) – (1 + tanx)/(1 – tanx) = tanα, then, what is the value of (sin2α + cotα)?
If 2cosx/(cosx – sinx) – (1 + tanx)/(1 – tanx) = tanα, then, what is the value of (sin2α + cotα)? Correct Answer 2
Given:
2cosx/(cosx – sinx) – (1 + tanx)/(1 – tanx) = tanα
Formula Used:
sin90° = 1, cot45° = 1 and tan45° = 1
Calculation:
2cosx/ (cosx – sinx) – (1 + tanx)/(1 – tanx) = tanα
⇒ 2cosx/ (cosx – sinx) – (1 + sinx/cosx)/(1 – sinx/cosx) = tanα
⇒ 2cosx/ (cosx – sinx) – (cosx + sinx)/(cosx – sinx) = tanα
⇒ (2cosx – cosx – sinx)/(cosx – sinx) = tanα
⇒ (cosx – sinx)/(cosx – sinx) = tanα
⇒ 1 = tanα
⇒ α = 45°
∴ (sin2α + cotα) = sin90° + cot45°
⇒ 1 + 1
⇒ 2
মোঃ আরিফুল ইসলাম
Feb 20, 2025