Let α and β be the roots of the equation x2 + px + q = 0. If α3 and β3 are the roots of the equation x2 + mx + n = 0, then what is the value of m + n ?
Let α and β be the roots of the equation x2 + px + q = 0. If α3 and β3 are the roots of the equation x2 + mx + n = 0, then what is the value of m + n ? Correct Answer <span style="">p</span><span style=" line-height: 0; position: relative; vertical-align: baseline; top: -0.5em; font-size:10.5px;">3</span><span style=""> + q</span><span style=" line-height: 0; position: relative; vertical-align: baseline; top: -0.5em; font-size:10.5px;">3</span><span style=""> - 3pq</span>
Concept :
If α and β are the roots of quadratic equation ax2 + bx + c = 0
Sum of root α + β = -b/a
Product of root αβ = c/a
Formula used :
1. a3 + b3 = (a + b)(a2 + b2 - ab)
2. a2 + b2 = (a + b)2 - 2ab
Calculation :
Given that, α and β be the roots of the equation x2 + px + q = 0
⇒ α + β = -p -----(1)
αβ = q -----(2)
Using the formula (1)
α3 + β3 = (α + β)(α2 + β2 - αβ)
Again using the formula (2)
α3 + β3 = (α + β)
α3β3 = n
⇒ n = q3
⇒ m + n = p3 - 3pq + q3
∴ m + n = p3 + q3 - 3pq