Find the value of x and y for which (3 + 4i) x2 – (4 – 3i) y = 3x – 4y + 6i, where x, y ∈ R.
Find the value of x and y for which (3 + 4i) x2 – (4 – 3i) y = 3x – 4y + 6i, where x, y ∈ R. Correct Answer <span class="math-tex">\(x = 0,\;1\;and\;y = 2,\;\frac{2}{3}\)</span>
CONCEPT:
Two complex number z1 = a1 + ib1 and z2 = a2 + ib2 are equal if and only if their real and imaginary parts are equal individually.
I.e. z1 = z2
⇒ Re(z1) = Re(z2) and Im (z1) = Im(z2)
CALCULATION:
Given (3 + 4i) x2 – (4 – 3i) y = 3x – 4y + 6i
⇒ 3x2 – 4y = 3x – 4y
⇒ 3x2 - 3x = 0
∴ x2 - x = 0
⇒ x = 0, 1
Now we will equate the imaginary part.
∴ 4x2 + 3y = 6
So, when x = 0; y = 2 and when x = 1, y = 2 / 3
মোঃ আরিফুল ইসলাম
Feb 20, 2025