The tangent at a point A on a circle with centre O intersects the diameter PQ of the circle, when extended, at point B. If ∠BAQ = 105°, then ∠APQ is equal to:
The tangent at a point A on a circle with centre O intersects the diameter PQ of the circle, when extended, at point B. If ∠BAQ = 105°, then ∠APQ is equal to: Correct Answer 75°
As we know,
∠PAQ = 90°
∠BAQ = 105° (Given)
⇒ ∠BAP + ∠PAQ = 105°
⇒ ∠BAP = 105° – 90° = 15°
As we know,
∠BAP = ∠AQP = 15°
In △APQ
∠APQ + ∠PAQ + ∠AQP = 180°
⇒ ∠APQ + 90° + 15° = 180°
∴ ∠APQ = 180° – 90° – 15° = 75°
মোঃ আরিফুল ইসলাম
Feb 20, 2025