If P and Q are symmetric matrices of the same order then PQ - QP is

If P and Q are symmetric matrices of the same order then PQ - QP is Correct Answer skew symmetric matrix

Concept:

If matrix P is symmetric matrix then 

Transpose of P = P

Consider A and B matrices, (AB)T = (B)T(A)T

If matrix P is skew symmetric matrix then 

Transpose of P = -P

 

Calculation:

P and Q Symmetric Matrices therefore

Transpose of P = P                  ..... (1)

Transpose of Q = Q                 ..... (2)

Now,

Transpose of (PQ - QP) = (PQ – QP)T

Using the property of Transpose , (A - B)T = (A)T - (B)T

(PQ - QP)T= (PQ)T - (QP)T                            

Using again property of transpose, (AB)T = (B)T(A)T

(PQ)T - (QP)T = (Q)T (P)T - (P)T (Q)T        ............(3)

Using Equations (1) and (2) in (3) we get,

(PQ)T - (QP)T = QP - PQ

(PQ)T - (QP)T = - (PQ - QP)                                  

So,  

Transpose of (PQ - QP) = (PQ - QP)T = -  (PQ - QP)

Which show that  

(PQ - QP) is a Skew Symmetric Matrix.

Hence, option (4) is correct.

Related Questions