Let p be the conjugate of the complex number q = x + iy . Find the value of pq. 

Let p be the conjugate of the complex number q = x + iy . Find the value of pq.  Correct Answer x<span style="position: relative; font-size: 10.5px; line-height: 0; vertical-align: baseline; top: -0.5em;">2</span> + y<span style="position: relative; font-size: 10.5px; line-height: 0; vertical-align: baseline; top: -0.5em;">2</span>

Concept:

Conjugate of a complex number:

For any complex number z = x + iy  the conjugate z̅ is given by  z̅ = x - iy

Calculation: 

q = x + iy

As p is conjugate to q 

∴ p = x - iy

Now, pq = (x + iy)(x - iy)

pq = x2 + iy - iy - i2y2

pq = x2 + y2

∴ pq = x2 + y2

Related Questions

Let f1(z) = z2 and f2(z) = $$\overline {\text{z}} $$ be two complex variable function. Here $$\overline {\text{z}} $$ is the complex conjugate of z. Choose the correct answer.
Which is the correct code that returns a complex number that is the complex conjugate of this one?