fx=sin x + cos x এর fx + f(-1) = 0 হলে x এর মান কোনটি?

fx=sin x + cos x এর fx + f(-1) = 0 হলে x এর মান কোনটি? Correct Answer -π2

We're given that:f(x) = sin x + cos xWe need to find the value of x such that:f(x) + f(-1) = 0Substituting f(x) and simplifying, we get:sin x + cos x + sin(-1) + cos(-1) = 0Using the identity sin(-x) = -sin(x) and cos(-x) = cos(x), we get:sin x + cos x - sin 1 - cos 1 = 0Rearranging, we get:sin x + cos x = sin 1 + cos 1Now, we can substitute f(x) back into this equation and simplify:f(x) = sin x + cos x = sin 1 + cos 1Therefore, we have:sin x + cos x = sin 1 + cos 1sin x = sin 1 and cos x = cos 1Since sin x = sin 1, we have:x = nπ + (-1)n * 1, where n is any integer.Similarly, since cos x = cos 1, we have:x = 2nπ ± 1, where n is any integer.Therefore, the possible solutions for x are:x = nπ + (-1)n * 1 or x = 2nπ ± 1, where n is any integer.

Related Questions

Find the ∫∫x3 y3 sin⁡(x)sin⁡(y) dxdy. ]) b) (-x3 Cos(x) – 3x2 Sin(x) – 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3]) c) (-x3 Cos(x) + 3x2 Sin(x) + 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3y2 Sin(y) + 6yCos(y) – 6Sin(y)) d) (–x3 Cos(x) + 6xCos(x) – 6Sin(x))(-y3 Cos(y))
cos 27°-cos 63°cos 27°+cos 63°=?