The value of $$\frac{{2{{\cos }^3}\theta - \cos \theta }}{{\sin \theta - 2{{\sin }^3}\theta }}:$$

The value of $$\frac{{2{{\cos }^3}\theta - \cos \theta }}{{\sin \theta - 2{{\sin }^3}\theta }}:$$ Correct Answer cotθ

$$\eqalign{ & \frac{{2{{\cos }^3}\theta - \cos \theta }}{{\sin \theta - 2{{\sin }^3}\theta }} \cr & = \frac{{\cos \theta \left}}{{\sin \theta \left}} \cr & = \frac{{\cos \theta \times \cos 2\theta }}{{\sin \theta \times \cos 2\theta }} \cr & = \cot \theta \cr} $$

Related Questions

What is the value of [(cos 3θ + 2cos 5θ + cos 7θ)÷(cos θ + 2cos 3θ + cos 5θ)] + sin 2θ tan 3θ?