hat will be the output of the following R code?
> centre <- function(x, type) {+ switch(type,+ mean = mean(x),+ median = median(x),+ trimmed = mean(x, trim = .1))+ }> x <- rcauchy(10)> centre(x, "mean")

hat will be the output of the following R code?

> centre <- function(x, type) {+ switch(type,+ mean = mean(x),+ median = median(x),+ trimmed = mean(x, trim = .1))+ }> x <- rcauchy(10)> centre(x, "mean")
Correct Answer gives mean with values depending on rcauchy values

Related Questions

The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are
$${\bf{\hat A}}$$ and $${\bf{\hat B}}$$ represent two physical characteristics of a quantum system. If $${\bf{\hat A}}$$ is Hermitian, then for the product $${\bf{\hat A\hat B}}$$  to be Hermitian, it is sufficient that
$${{\bf{\hat A}}}$$ and $${{\bf{\hat B}}}$$ are two quantum mechanical operators. If $$\left[ {{\bf{\hat A}},\,{\bf{\hat B}}} \right
What is the formula for the median of Grouped data? * h b) Median = L + * h c) Median = L + + h d) Median = L * * h