Two closely-coiled helical springs 'A' and 'B' of the same material, same number of turns and made from same wire are subjected to an axial load W. The mean diameter of spring 'A' is double the mean diameter of spring 'B'. The ratio of deflections in spring 'B' to spring 'A' will be

Two closely-coiled helical springs 'A' and 'B' of the same material, same number of turns and made from same wire are subjected to an axial load W. The mean diameter of spring 'A' is double the mean diameter of spring 'B'. The ratio of deflections in spring 'B' to spring 'A' will be Correct Answer $$\frac{1}{8}$$

Related Questions

When an open coiled helical compression spring is subjected to an axial compressive load, the maximum shear stress induced in the wire is (where D = Mean diameter of the spring coil, d = Diameter of the spring wire, K = Wahl's stress factor and W = Axial compressive load on the spring)
When a closely-coiled helical spring of mean diameter (D) is subjected to an axial load (W), the deflection of the spring ($$\delta $$) is given by (where d = Diameter of spring wire, n = No. of turns of the spring and C = Modulus of rigidity for the spring material)
When an open coiled helical compression spring is subjected to an axial load (W), the compression produced in the spring will be (where, n = No. of active turns of the spring and G = Modulus of rigidity for the spring material)