If $${x^2} + {y^2} = 29$$ and xy = 10 where x > 0, y > 0, x > y, then the value of $$\frac{{x + y}}{{x - y}}$$ is?
If $${x^2} + {y^2} = 29$$ and xy = 10 where x > 0, y > 0, x > y, then the value of $$\frac{{x + y}}{{x - y}}$$ is? Correct Answer $$\frac{7}{3}$$
$$\eqalign{ & {\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy \cr & \Rightarrow {\left( {x + y} \right)^2} = 29 + 2 \times 10 \cr & \Rightarrow {\left( {x + y} \right)^2} = 49 \cr & \therefore x + y = 7 \cr & {\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy \cr & \Rightarrow {\left( {x - y} \right)^2} = 29 - 2 \times 10 \cr & \Rightarrow {\left( {x - y} \right)^2} = 9 \cr & \therefore \left( {x - y} \right) = 3 \cr & \therefore \frac{{x + y}}{{x - y}} = \frac{7}{3} \cr} $$
মোঃ আরিফুল ইসলাম
Feb 20, 2025