A curve passes through the point (x = 1, y = 0) and satisfies the differential equation $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = \frac{{{{\text{x}}^2} + {{\text{y}}^2}}}{{2{\text{y}}}} + \frac{{\text{y}}}{{\text{x}}}.$$ The equation that describes the curve is
A curve passes through the point (x = 1, y = 0) and satisfies the differential equation $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = \frac{{{{\text{x}}^2} + {{\text{y}}^2}}}{{2{\text{y}}}} + \frac{{\text{y}}}{{\text{x}}}.$$ The equation that describes the curve is Correct Answer $$\ln \left( {1 + \frac{{{{\text{y}}^2}}}{{{{\text{x}}^2}}}} \right) = {\text{x}} - 1$$
মোঃ আরিফুল ইসলাম
Feb 20, 2025