A differential equation is given as
$${{\text{x}}^2}\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} - 2{\text{x}}\frac{{{\text{dy}}}}{{{\text{dx}}}} + 2{\text{y}} = 4$$
The solution of differential equation in terms of arbitrary constant C1 and C2 is

A differential equation is given as
$${{\text{x}}^2}\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} - 2{\text{x}}\frac{{{\text{dy}}}}{{{\text{dx}}}} + 2{\text{y}} = 4$$
The solution of differential equation in terms of arbitrary constant C1 and C2 is Correct Answer $${\text{y}} = {{\text{C}}_1}{{\text{x}}^2} + {{\text{C}}_2}{\text{x}} + 2$$

Related Questions

The figure shows the plot of y as a function of x
Differential Equations mcq question image
The function shown is the solution of the differential equation (assuming all initial conditions to be zero) is
Consider the following difference equation
$${\text{x}}\left( {{\text{ydx}} + {\text{xdy}}} \right)\cos \frac{{\text{y}}}{{\text{x}}} = {\text{y}}\left( {{\text{xdy}} - {\text{ydx}}} \right)\sin \frac{{\text{y}}}{{\text{x}}}$$
Which of the following is the solution of the above equation (c is an arbitrary constant)?