The unilateral Laplace transform of f(t) is $${1 \over {{s^2} + s + 1}}.$$   Which one of the following is the unilateral Laplace transform of g(t) = t.f(t)?

The unilateral Laplace transform of f(t) is $${1 \over {{s^2} + s + 1}}.$$   Which one of the following is the unilateral Laplace transform of g(t) = t.f(t)? Correct Answer $${s \over {{{\left( {{s^2} + s + 1} \right)}^2}}}$$

Related Questions

Laplace transform of the function f(t) is given by $${\text{F}}\left( {\text{s}} \right) = {\text{L}}\left\{ {{\text{f}}\left( {\text{t}} \right)} \right\} = \int_0^\infty {{\text{f}}\left( {\text{t}} \right){{\text{e}}^{ - {\text{st}}}}{\text{dt}}{\text{.}}} $$       Laplace transform of the function shown below is given by
Transform Theory mcq question image
Given that $$F\left( s \right)$$  is the one-side Laplace transform of $$f\left( t \right),$$  the Laplace transform of $$\int_0^t {f\left( \tau \right)d\tau } $$   is
Given that F(s) is the one-sided Laplace transform of f(t), the Laplace transform of $$\int\limits_0^t {f\left( \tau \right)} d\tau $$   is
If the Laplace transform of $${{\text{e}}^{\omega {\text{t}}}}$$  is $$\frac{1}{{{\text{s}} - \omega }},$$  the Laplace transform of tcosh t is
Laplace transform of cos (ωt) is $$\frac{{\text{s}}}{{{{\text{s}}^2} + {\omega ^2}}}.$$  The Laplace transform of e-2t cos(4t) is
The Laplace transform of a function f(t) u(t), where f(t) is periodic with period T, is A(s) times the Laplace transform of its first period. Then