If $${\text{sin}}\left( {{{60}^ \circ } - \theta } \right)$$ = $${\text{cos}}\left( {\psi - {{30}^ \circ }} \right),$$ then the value of $${\text{tan}}\left( {\psi - \theta } \right)$$ is (assume that $$\theta $$ and $$\psi $$ are both positive acute angles with$$\theta {30^ \circ }$$ ) ?
If $${\text{sin}}\left( {{{60}^ \circ } - \theta } \right)$$ = $${\text{cos}}\left( {\psi - {{30}^ \circ }} \right),$$ then the value of $${\text{tan}}\left( {\psi - \theta } \right)$$ is (assume that $$\theta $$ and $$\psi $$ are both positive acute angles with$$\theta {30^ \circ }$$ ) ? Correct Answer $$\sqrt 3 $$
$$\eqalign{ & {\text{sin}}\left( {{{60}^ \circ } - \theta } \right) = {\text{cos}}\left( {\psi - {{30}^ \circ }} \right) \cr & \Rightarrow \left( {{{60}^ \circ } - \theta } \right) + \left( {\psi - {{30}^ \circ }} \right) = {90^ \circ } \cr & \left \cr & \Rightarrow \left( {\psi - \theta } \right) = {90^ \circ } - {30^ \circ } \cr & \Rightarrow \left( {\psi - \theta } \right) = {60^ \circ } \cr & \Rightarrow \tan \left( {\psi - \theta } \right) = \tan {60^ \circ } \cr & \Rightarrow \tan {60^ \circ } = \sqrt 3 \cr} $$
মোঃ আরিফুল ইসলাম
Feb 20, 2025