The function f(t) satisfies the differential equation $$\frac{{{{\text{d}}^2}{\text{f}}}}{{{\text{d}}{{\text{t}}^2}}} + {\text{f}} = 0$$ and the auxiliary conditions, f(0) = 0, $$\frac{{{\text{df}}}}{{{\text{dt}}}}\left( 0 \right) = 4.$$ The Laplace transform of f(t) is given by
The function f(t) satisfies the differential equation $$\frac{{{{\text{d}}^2}{\text{f}}}}{{{\text{d}}{{\text{t}}^2}}} + {\text{f}} = 0$$ and the auxiliary conditions, f(0) = 0, $$\frac{{{\text{df}}}}{{{\text{dt}}}}\left( 0 \right) = 4.$$ The Laplace transform of f(t) is given by Correct Answer $$\frac{4}{{{{\text{s}}^2} + 1}}$$
মোঃ আরিফুল ইসলাম
Feb 20, 2025

