Consider the following for real numbers α, β, γ and δ ? 1) sec α = 1/4 2) tan β = 20 3) cosec γ = 1/2 4) cos δ = 2 How many of the above statements are not possible?

Consider the following for real numbers α, β, γ and δ ? 1) sec α = 1/4 2) tan β = 20 3) cosec γ = 1/2 4) cos δ = 2 How many of the above statements are not possible? Correct Answer three

Sec of any number can never be less than 1 tan can take any value from -∞ to + ∞ cosec of any number can never be less than 1 cos of any number can never be greater than 1 so option 1,3,4 are not possible

Related Questions

$$\frac{{{\text{cos }}\alpha }}{{{\text{sin }}\beta }} = n$$   and $$\frac{{{\text{cos }}\alpha }}{{{\text{cos }}\beta }} = m,$$   then the value of $${\text{co}}{{\text{s}}^2}\beta $$   is?
In a two-electron atomic system having orbital and spin angular momenta $${l_1}{l_2}$$  and $${s_1}{s_2}$$  respectively, the coupling strengths are defined as $${\Gamma _{{l_1}{l_2}}},\,{\Gamma _{{s_1}{s_2}}},\,{\Gamma _{{l_1}{s_1}}},\,{\Gamma _{{l_2}{s_2}}},\,{\Gamma _{{l_1}{l_2}}}$$      and $${\Gamma _{{l_2}{s_1}}}.$$  For the jj coupling. scheme to be applicable, the coupling strengths must satisfy the condition
If $$\frac{{{\text{cos }}\alpha }}{{{\text{cos }}\beta }} = a$$   and $$\frac{{{\text{sin }}\alpha }}{{{\text{sin }}\beta }} = b{\text{,}}$$   then the value of $${\sin ^2}\beta $$  in terms of a and b is?