A perfect cube is an integer whose cube root is an integer. For example, 27, 64 and 125 are perfect cubes. If p and q are perfect cubes, which of the following will not necessarily be a perfect cube?

A perfect cube is an integer whose cube root is an integer. For example, 27, 64 and 125 are perfect cubes. If p and q are perfect cubes, which of the following will not necessarily be a perfect cube? Correct Answer pq+27

A perfect cube will have prime factors that are in groups of 3; for example 125 has the prime factors 5 x 5 x 5 , and 64 x 125 will also be a cube because its factors will be 4 x 4 x 4 x 5 x 5 x 5

Consider the answer choices in turn.

8 is the cube of 2, and p is a cube, and so the product will also be a cube.

pq will also be a cube as shown above.

pq is a cube and so is 27, but their sum need not be a cube. Consider the case where p =1 and q = 8, the sum of pq and 27 will be 35 which has factors 5 x 7 and is not a cube.

-p will be a cube.

Since the difference between p and q is raised to the power of 6, this expression will be a cube (with cube root = difference squared).

Related Questions

Which of the following represents the correct matching set.   Type of root   Example a) Taproot root i) Banyan tree b) Adventitious root ii) Carrot c) Prop root iii) Sugarcane d) Stilt root iv) Sweet potato