50 g benzaldehyde vapour is condensed at 179°C, What is the enthalpy of the liquid relative to the vapour? Given: The molecular weight of benzaldehyde is 106.12, the normal boiling point is 179.0°C and the standard heat of vaporization is 38.40 kJ gmol-1. For condensation the latent heat is – 38.40 kJ gmol-1.

50 g benzaldehyde vapour is condensed at 179°C, What is the enthalpy of the liquid relative to the vapour? Given: The molecular weight of benzaldehyde is 106.12, the normal boiling point is 179.0°C and the standard heat of vaporization is 38.40 kJ gmol-1. For condensation the latent heat is – 38.40 kJ gmol-1. Correct Answer -18.09 kJ

ΔH = 50 g (- 38.40 kJ gmol-1). |(1 gmol)/(106.12 g)| = -18.09 kJ Therefore, the enthalpy of 50 g benzaldehyde liquid relative to the vapour at 179°C is – 18.09 kJ. As heat is released during condensation, the enthalpy of the liquid is lower than the vapour.

Related Questions

How far is point 'R' from Point 'T'? Statement (I): Point 'R' is 5 metres to the north of point 'M'. Point 'U' is 4 metres to the east of point 'R'. Point 'T' is to the west of point 'R' such that points 'U' 'R' and 'T' form a straight line of  metres. Statement (II): Point 'Z' is metres to the south of point 'T'. Point 'U' is  metres to the east of point 'T'. Point 'M' is  metres to the east of point 'Z'. Point 'R' is  metres to the north of point 'M'. Point 'R' lies on the line formed by joining points 'T' and 'U'.