For the solution of a system of discretized equations with consistent approximations to be consistent, which of these conditions is necessary?

For the solution of a system of discretized equations with consistent approximations to be consistent, which of these conditions is necessary? Correct Answer Stability

Inconsistency problems arise when we truncate higher order terms. These approximations are consistent is the same order terms are truncated always. Though this condition is satisfied, it is a must for the system of equations to be stable to satisfy consistency.

Related Questions

Which of these changes should be made in the semi-discretized equation to get the fully discretized equation?
The figure shows the plot of y as a function of x
Differential Equations mcq question image
The function shown is the solution of the differential equation (assuming all initial conditions to be zero) is
Which interpolation technique has the capability of providing approximations of free from curves using higher order equations?
If the domain and equations are not discretized, which of these will become true?