A mass of 1 kg of air contained in a cylinder at 1000 K, 1.5 MPa, expands in a reversible isothermal process to a volume 10 times larger. Calculate the heat transfer during the process.

A mass of 1 kg of air contained in a cylinder at 1000 K, 1.5 MPa, expands in a reversible isothermal process to a volume 10 times larger. Calculate the heat transfer during the process. Correct Answer 660.84 kJ

Process: T = constant so with ideal gas => u2 = u1 1Q2 = 1W2 = ⌠PdV = P1V1 ln (V2/V1) = mRT1 ln (V2/V1) = 1 × 0.287 × 1000 ln (10) = 660.84 kJ.

Related Questions

On a P-V diagram of an ideal gas, suppose a reversible adiabatic line intersects a reversible isothermal line at point A. Then at a point A, the slope of the reversible adiabatic line $${\left( {\frac{{\partial {\text{P}}}}{{\partial {\text{V}}}}} \right)_{\text{S}}}$$  and the slope of the reversible isothermal line $${\left( {\frac{{\partial {\text{P}}}}{{\partial {\text{V}}}}} \right)_{\text{T}}}$$  are related as (where, $${\text{y}} = \frac{{{{\text{C}}_{\text{p}}}}}{{{{\text{C}}_{\text{v}}}}}$$  )