In a U-tube mercury manometer, one end is exposed to the atmosphere and the other end is connected to a pressurized gas. The gauge pressure of the gas is found to be 40 kPa. Now, we change the manometric fluid to water. The height difference changes by: (ρmercury = 13600 kg/m3, ρwater = 1000 kg/m3).

In a U-tube mercury manometer, one end is exposed to the atmosphere and the other end is connected to a pressurized gas. The gauge pressure of the gas is found to be 40 kPa. Now, we change the manometric fluid to water. The height difference changes by: (ρmercury = 13600 kg/m3, ρwater = 1000 kg/m3). Correct Answer 1260%

Since the gauge pressure remains the same ρ*(h2 – h1) = constant. The height difference in mercury manometer is 0.30 m and that in a water manometer is 4.08 m. Percent change is thus, 1260%. Be careful about the denominator used for computing percent change.

Related Questions

In the manometer given above, 2 immiscible fluids mercury (ρ = 13600 kg/m3) and water (ρ = 1000 kg/m3) are used as manometric fluids. The water end is exposed to atmosphere (100 kP