Besides breaking ground loops, isolation blocks high voltage surges and rejects high common mode voltages.

Besides breaking ground loops, isolation blocks high voltage surges and rejects high common mode voltages. Correct Answer True

It is true. Besides breaking ground loops, isolation blocks high voltage surges and rejects high common mode voltages. The isolation devices pass the signal from its source to the measurement device without a physical or galvanic connection by using transformer, optical or capacitive coupling technique.

Related Questions

Consider the following questions: A): Five wheel rotations on a bike takes you 12 yards. How many wheel rotations will be required to go 60 yards? B): In a college, 5 out of every 8 seniors live in apartments. Out of 30 seniors how many are likely to live in apartment? C): John and Lisa were walking at the same speed. Lisa started first. When Lisa has walked 6 blocks, john has walked 2 blocks. How many blocks would John cover when Lisa has covered 12 blocks. Choose the correct option.
Read the passage carefully and choose the best answer to each question out of the four alternatives and click the button corresponding to it. The Alaska pipeline starts at the frozen edge of the Arctic Ocean. It stretches southward across the largest and northernmost state in the United States, ending at a remote ice-free seaport village nearly 800 miles from where it begins. It is massive in size and extremely complicated to operate. The steel pipe crosses windswept plains and endless miles of delicate tundra that tops the frozen ground. It weaves through crooked canyons, climbs sheer mountains, plunges over rocky crags, makes its way through thick forests, and passes over or under hundreds of rivers and streams. The pipe is 4 feet in diameter, and up to 2 million barrels (or 84 million gallons) of crude oil can be pumped through it daily. Resting on H-shaped steel racks called "bents", long sections of the pipeline follow a zigzag course high above the frozen earth. Other long sections drop out of sight beneath spongy or rocky ground and return to the surface later on. The pattern of the pipeline's up-and-down route is determined by the often harsh demands of the arctic and subarctic climate, the tortuous lay of the land, and the varied compositions of soil, rock, or permafrost (permanently frozen ground). A little more than half of the pipeline is elevated above the ground. The remainder is buried anywhere from 3 to 12 feet, depending largely upon the type of terrain and the properties of the soil. One of the largest in the world, the pipeline cost approximately $8 billion and is by far the biggest and most expensive construction project ever undertaken by private industry. In fact, no single business could raise that much money, so 8 major oil companies formed a consortium in order to share the costs. Each company controlled oil rights to particular shares of land in the oil fields and paid into the pipeline-construction fund according to the size of its holdings. Today, despite enormous problems of climate, supply shortage, equipment breakdowns, labour disagreements, treacherous terrain, a certain amount of mismanagement, and even theft, the Alaska pipeline has been completed and is operating.
The Alaskan pipeline ends
Read the passage carefully and choose the best answer to each question out of the four alternatives and click the button corresponding to it. The Alaska pipeline starts at the frozen edge of the Arctic Ocean. It stretches southward across the largest and northernmost state in the United States, ending at a remote ice-free seaport village nearly 800 miles from where it begins. It is massive in size and extremely complicated to operate. The steel pipe crosses windswept plains and endless miles of delicate tundra that tops the frozen ground. It weaves through crooked canyons, climbs sheer mountains, plunges over rocky crags, makes its way through thick forests, and passes over or under hundreds of rivers and streams. The pipe is 4 feet in diameter, and up to 2 million barrels (or 84 million gallons) of crude oil can be pumped through it daily. Resting on H-shaped steel racks called "bents", long sections of the pipeline follow a zigzag course high above the frozen earth. Other long sections drop out of sight beneath spongy or rocky ground and return to the surface later on. The pattern of the pipeline's up-and-down route is determined by the often harsh demands of the arctic and subarctic climate, the tortuous lay of the land, and the varied compositions of soil, rock, or permafrost (permanently frozen ground). A little more than half of the pipeline is elevated above the ground. The remainder is buried anywhere from 3 to 12 feet, depending largely upon the type of terrain and the properties of the soil. One of the largest in the world, the pipeline cost approximately $8 billion and is by far the biggest and most expensive construction project ever undertaken by private industry. In fact, no single business could raise that much money, so 8 major oil companies formed a consortium in order to share the costs. Each company controlled oil rights to particular shares of land in the oil fields and paid into the pipeline-construction fund according to the size of its holdings. Today, despite enormous problems of climate, supply shortage, equipment breakdowns, labour disagreements, treacherous terrain, a certain amount of mismanagement, and even theft, the Alaska pipeline has been completed and is operating.
What is the capacity of the Alaskan pipeline?
Read the passage carefully and choose the best answer to each question out of the four alternatives and click the button corresponding to it. The Alaska pipeline starts at the frozen edge of the Arctic Ocean. It stretches southward across the largest and northernmost state in the United States, ending at a remote ice-free seaport village nearly 800 miles from where it begins. It is massive in size and extremely complicated to operate. The steel pipe crosses windswept plains and endless miles of delicate tundra that tops the frozen ground. It weaves through crooked canyons, climbs sheer mountains, plunges over rocky crags, makes its way through thick forests, and passes over or under hundreds of rivers and streams. The pipe is 4 feet in diameter, and up to 2 million barrels (or 84 million gallons) of crude oil can be pumped through it daily. Resting on H-shaped steel racks called "bents", long sections of the pipeline follow a zigzag course high above the frozen earth. Other long sections drop out of sight beneath spongy or rocky ground and return to the surface later on. The pattern of the pipeline's up-and-down route is determined by the often harsh demands of the arctic and subarctic climate, the tortuous lay of the land, and the varied compositions of soil, rock, or permafrost (permanently frozen ground). A little more than half of the pipeline is elevated above the ground. The remainder is buried anywhere from 3 to 12 feet, depending largely upon the type of terrain and the properties of the soil. One of the largest in the world, the pipeline cost approximately $8 billion and is by far the biggest and most expensive construction project ever undertaken by private industry. In fact, no single business could raise that much money, so 8 major oil companies formed a consortium in order to share the costs. Each company controlled oil rights to particular shares of land in the oil fields and paid into the pipeline-construction fund according to the size of its holdings. Today, despite enormous problems of climate, supply shortage, equipment breakdowns, labour disagreements, treacherous terrain, a certain amount of mismanagement, and even theft, the Alaska pipeline has been completed and is operating.
What are "bents"?