Find the value of ∫tan-1(x)dx.
Find the value of ∫tan-1(x)dx. Correct Answer xtan-1 (x) – 1⁄2 ln(1 + x2)
Add constant automatically Given, ∫tan-1(x)dx Putting, x = tan(y), We get, dy = sec2(y)dy, ∫ysec2(y)dy By integration by parts, ytan(y) – log(sec(y)) = xtan-1 (x) – 1⁄2 ln(1 + x2).
মোঃ আরিফুল ইসলাম
Feb 20, 2025